If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+104H+56.
We move all terms to the left:
(H)-(-16H^2+104H+56.)=0
We get rid of parentheses
16H^2-104H+H-56.=0
We add all the numbers together, and all the variables
16H^2-103H-56=0
a = 16; b = -103; c = -56;
Δ = b2-4ac
Δ = -1032-4·16·(-56)
Δ = 14193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14193}=\sqrt{9*1577}=\sqrt{9}*\sqrt{1577}=3\sqrt{1577}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-103)-3\sqrt{1577}}{2*16}=\frac{103-3\sqrt{1577}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-103)+3\sqrt{1577}}{2*16}=\frac{103+3\sqrt{1577}}{32} $
| 5=12x+28 | | 5x(x-5)=5x(x-5) | | 1684566-x=500000 | | 3(x-0)=-21 | | 4x+27=37 | | ((7/12)a)=14 | | (7/12)a=14 | | 5(1y+6)=25 | | 24a^2+36a=21a+28 | | M4+2m2+2m+1=0 | | 2(x/3+5)=12 | | 5x-2(x+6)=0 | | 7x+5=11+5× | | 8(-1)−6y=16 | | π=-0.2x^2+0.4x+600 | | 7(4w+8)/5=3 | | 5^(x+6)=7 | | 6x+5=-9x2-4 | | 6(x+2)-4(x+3)=7 | | -5(-3z+1)=-45 | | x,2+3x=0 | | -x2=-14 | | 33+x=2x+8 | | 5=36+3x | | 4x-2x,2=5 | | 2(6x+6)=16 | | -1260/84=x | | 11=f+4 | | 3(x=4)=5 | | (7x+3)/2x=3 | | 4*x=-96 | | (5z-4)(2-z)=0 |